AD-A105 74%

UNCLASSIFIED

FLORIDA STATE UNIV TALLAHASSEE DEPT OF STATISTICS F/6 12/1
MINIMAX ESTIMATION OF A MULTIVARIATE NORMAL MEAN UNDER A CONVEX==ETC (U)
AU6 81 P LIN» A MOUSA NODOI“-BD-C-IIO 3
FSU=STATISTICS=-M591

END
bate
FuMen

1 -8t

oTic







e S W e LB g

ALY

-

i

- i KN
Voo oAt can o

T

- VS SN o e

a Mmimax Estmauon of a Multxvanate Normal Mean /
under a Convex Loss Function.

A ot

- P1 Erh/Lin and Amany Mousa | i e e

FSU Statistics Report=No=M591
ONR Technical Repert—Ne.~153 /|

- ~ .
/ // L __.Z 'V'
S . R
/Au?tt;:, w81
l—-——-——/‘“ Lk
The Florida State University
Department of Statistics
T_al_lahassee, Florida 32306
-4 _ B . B A . ,
v Foiol- Toaia LTia L—i s 47
; — 24 2T
/
/x’f
l'l‘lus work was supported bM = Air Force under Office of
Naval Research Contract No 0014 80-C-0093, Reproduction in whole or
in part is permitted for any purpose of the United States Government.
Accession For
NTIS T GRARI )qi
DTIC TAB S - y
Unannouneced |
Justification .. S <
IR ' \
i
BY e o a3 ’
Distritut ( - ,
AVHIL Lisdte Dot ‘ . s
b nv'.fl Lty L_,C
Dist ;:} i L R . I [

|
|
' [
L ]




Minimax Estimation of a Multivariate Normal Mean
under a Convex Loss Function

by

Pi-Erh Lin1 and Amany Mousa
Florida State University

Summary

Let X = (Xl, tees Xp)’ N Np(g, L) where u = (ul, cens up)‘ and

L= diag(c%, ey o;) are both unknown and p 2 3. Let (ni-Z)wi/oi ~ x:i,
independent of wj (i=j=1 ..., p). Assume that (wl, cees wp) and X are
w) and [Ixllg «xw o7t

independent. Define ¥ = diag(w X where

1, I..,
Q= diag(ql, cens qp),qi >0,i=1, ..., p. In this paper, the minimax

estimator of Berger and Rock (Ann. Statist. 4 (1976), 642-648), given by

$(X, W) = [Ip - r(X, W)H;H&zo'lw'lll, is shown to be minimax relative to

the convex loss (§-u)“[aQ + (1-a)z'1](§-g)/c, where C = o tr(ZQ) + (l-a)p
and 0 < a < 1, under certain conditions on r(X, ¥). This generalizes the

above-mentioned result of Berger and Bock.

lThis work was supported by the Army, Navy and Air Force under Office
of Naval Research Contract No. N00014-80-C-0093. Reproduction in whole or
in part is permitted for any purpose of the United States Government.

AMS 1970 Subject Classifications. Primary 62C99, Secondary 62F10, 62H99.

Key words and Phrases. Unknown variances, convex combination of loss ]
functions, risk function.
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1. Introduction. Let X = (X;, ..., xp)' be a p-variate (p 2 3)
random vector normally distributed with mean y = (ul, vees up)‘ and co-
variance matrix I = diag(of, eees o;) where cg, i=1, ..., p, are unknown.

i This paper obtains a class of minimax estimators for p vhen the loss in-

curred in estirating p by § is given by
(1.1) LG & D) = (8- [aQ + (-2 11 (8-w)/C,

where 0 € a <1, C = a tr(QZ) + (1-a)p, and Q is a known pxp diaponal

matrix with diagonal elements q; > 0,i=1, ..., p. The loss (1.1) is

a convex combination of two commonly used loss functions, namely

(1.2) L, (8 s ) = (8-1) "QUE-R)/tr(QE)
1
; and
l‘ !
| (1.3) L& 1 £) = (8077 (8- /.

The loss function Ll(g; i, I) may be used when the relative importance

cf the parameters to be estimated is reflected by a known set of weights

represented by Q, while the loss Lz(g; K, T) represents the case when the
relative importance is reflected naturally by the inverse of the covariance

matrix of the variables. In the literature, statisticians tend to use

P U SV U N

either Ll(g; ¥, I) or Ly(§; u, T) as a loss function. In the convex loss
(1.1) we have combined both viewpoints in such a way that the more a is |
near 1 the more loss is to be assessed by Ll(g; K> L), and vice versa. ‘

It is clear that the maximum likelihood estimator, X, is minimax with

risk R(X, u) = ELL(L; Kk, £) = 1. Thus an estimator § will be minimax under 1
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loss (1.1) if and only if R(X, p) - R(§, ») 2 0 for all y and £. In evalu-
ating the difference in risk it is necessary to impose certain -conditions
on I. Specifically, the values or bounds of the trace of z'lQ'l, denoted
by tr(t'lq'l), and the minimum characteristic root of Qf, denoted by
chmin(Qt), will be assumed. Similar conditions have been noted by various
authors. For example, Gleser (1976) shows that if a lower bound for

ch . (Qf) is known then a family of minimax estimators for y can be ob-

min
tained under the loss function Ll(g; K, I): otherwise no estimator of the
form [Ip - h(z‘w’lg)q'lw'llx can be minimax for uy unless h(u) = 0 for
almost all u 2 0 where W ~ W(n, ) independent of X and h: R+ R is a
real function satisfying certain conditions. 1In our case where both Q
and I are diagonal matrices a sufficient set of conditions on £ would be

(1.4) max {oi} $1/c, and min {oﬁ} 2 /e,
1<i<p 1<igp

for some positive constants c, and c,y (0 < €, S¢y< =). This set of

1
conditions on I is not unreasonable in application.
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J' 2. Useful Lemmas. In establishing the minimaxity of an estimator

of the mean of a multivariate normal distribution the following lemmas are

very useful. They are presented here for ease of reference and without

1 proof.

Lemma 2.1. ([Stein (1974)]. Let Y ~ N(0, 1) and let g be an absolutely

continuous function, g: R -+ R. Then
E,[e”(M] = E,[¥g(V)]
provided that all expectations exist and are finite.

Lemma 2.2. [Efron and Morris (1976)]. Let U~ x: and let g be as

defined in Lemma 2.1. Then
! Ey[U(W)] = nE [g()] + 2E, [Ug" (V)]
;z provided that all expectations exist and are finite.

Corollary 2.2.1. Let U and g be as defined in Lemma 2.2. Let

{ Z=cU/(n-2), ¢ > 0, and h(2Z) = g[(n-2)Z/c]. Then

Ez[(n-Z)Zh(Z)/c] = nEzh(Z) + ZEZ[Zh‘(Z)]

provided that all expectations exist and are finite.

Lemma 2.3. [Lehmann (1966)]. lLet S be any random variable, and let
pl(S) and pz(S) map the real line into itself. If pl(S) and pz(s) are either

both nonincreasing in S or both nondecreasing in S, then

Egp, (S)p,(5)] 2 Eglp, (S)Eglp,(S)].




: - -~ ik o la b i w o mRy, WARE o tiabe -4
s i e N W . . - i .

4
Note that Lemmas 2.1 and 2.2 may be proved by integration by parts

4

; and the corollary by the indicated change of variable. Lemma 2.3 follows
H from a new concept of dependency, namely the positive quadrant dependence,
introduced by Lehmann (1966). The above results will be employed in the
2

2

proof of the main theorem in the next section.
4

1
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3. Main Result. Let X be a p-variate (p 2 3) random vector normally
distributed with unknown mean p and unknown covariance matrix

; 2 2 _ 2 2 i =
T = diag(os, ..., op). Assume that (ni 2)wi/cxi o xni, (ni >2),i=1, ..., p»
where wo and wj (i=j=1, ..., p) are mutually independent and are inde-
pendent of X. As in Berger and Bock (1976), define W = diag(wl, iee, W),

P

T= min (x2 /n,), and 1 = T(ny, ..., np) = E(T'l). In. the following theorem

1sisp Mt
we will obtain a class of minimax estimators for y relative to the loss

function given by (1.1).
Theorem. The estimator
-2 -1.-1
(3.1) 8%, W = [T, - (%, WIXHLQ WX

is minimax for y relative to the loss function (1.1) with Q = diag(ql, . qp),
1

where IIL"‘% = 5‘!?’1Q°1W’ X, provided that the following conditions are

satisfied
2{c(p-21) + (l-a)[tr(x'lQ'l) - 2'rchmax()3'1Q-1)]}

(i) 0 <sr(X, W) < P | with
a + (l-u)chmax(t Q)
-1 -1 -1 -1
a(p-2t) + (l-a)[tr(Z Q 7) - 2'rchmax(r. Q)] 20and 0 <a <1,

(ii) r(X, W) is nondecreasing in ’Xi" i=1, ..., p,

(iii) r(X, W) is nonincreasing in Wss i=1, ..., p, 3
(iv) X, W) "_)_('ll;;z is nondecreasing in w;, i =1, ..., p. H
Proof. Write § = §(X, W) and r = r(X, W). Let A = R(X, ) -~ R(S, ).

Then
-2 - -1,.-1,-1
(3.2) ca = By y{2elXlly" X-0) *leQ ¢ (1-0)2771Q7 WK

.

gl w e oo + -z i WYy

= 2{as, + (1-a)a,], say,
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and

-2 se-1.-1 -1 2 -4,...~1.1.-1-1-1
4, = E,,,ztrllxllw X’ 'QWwX-r "l‘,llw)sw Q zTQ W X).

In the following we will find appropriate lower bounds for A, and A

i 1 2
u which, in conjunction with Condition (i), will establish that A 2 0. But
)
N a lower bound for A1 has been obtained by Berger and Bock (1976, Eq. (2.10)),
¥
h; namely
Vi
N -2
, (3.3) 8; 2 Ex{By(rlIXly [P - 2t - B (x/2)]).
}
'{ We will proceed to find a lower bound for 8,. Let
(3.4) 8, = AZ1 + 4,
where

‘ "2 ” "1 -1 -1
1 (3.5) by = By x [l e 57T Ty
'{!
| and
i
i 2 -4 ,,-1.-1.-1 -1 -1

] (3.6) 853 = By x[- (/D lIXIL X W Q™ s QT Wy

t

, 2 -2 -1.-1
- 2 E",E[—(I/Z)r ||)g|w ch (EQ ).

; Then, taking expectation with respect to X first and then W, and by an

application of Lemma 2.1, we have

§
3
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(3.7) 8, = Ew,zs R o q W (rnxnwx )[ 7 H
{
; B
} 1 3 -2
| = E, E - TG x)
L W35y Ay 9% Wi
g — 2
1 e g[ r 2rX Xi arﬂ
= Pw,x i 2° 2 X
: Haca(lighy  Mxligage?  IxI2
3
5 2
| e |r 1 P X
§ S TR E U TTEE S
i
l; The last inequality follows from Condition (ii) since xi(ar/axi) 2 0 for
: all i =1, ..., p. The first term in the right-hand side of (3.7) may be
further evaluated by taking the expectation first with respect to W and
then with respect to X. Recall that (ni-Z)wi/oi N x: . Then, it follows
i
from Corollary 2.2.1 with h(w,) = r/(";(,”;wi) that, for each i =1, ..., p,
: 2
' nE[ T ]_"i'zs[r] E[‘l ar_, 2rXy r
iw, 2| " T2 . 2| . 2w, 4 3° 2_ |
A i) o2 slenZ) T alienZ s ixlifeed i,
l
B Therefore,
P
l i arx?
- 2 or
! (3.8) E, [ L = E, LA 1 ]
. X 2 »X 272 L) 239
. UIEI g sy -2 lixligags -2 02 ™
b.

‘ 2

rs . B r arx; ;l
' W, X 22 ] :
‘ Ahxiyed -2 lxlfagwil
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The last inequality follows by Condition (iii). Now, substituting (3.8)

into the last expression of (3.7), we have

B x> x>
(3.9) 4,, 2 E L3 f 1 _ _4r E i o _or E i
: 21 w,g_“xl"il (21 o2 7 S 3 L 73
Llty 1= aiqi ”,).(,”w i=1 (ni' )qiwi ".x,llw i=1 qiw'

- 2

: r g 1 2r [ y ] Xy

W 2, 2 4 ., -2 2.3

AUl 121 0fa; Xl 151 7% qfw;

s E r 1 _or max[“iji_ 1]]
W,X 2 . 2 2, -2 w, 2
"-”KHW i=1 CFCH Hg”w 1sicpMi™e ¥y CFCH

2 By (lxlhteraeh - avlen a7lohn.

Substituting (3.9) and (3.6) into (3.4), we obtain

(3.10) 8, 2 By (Lelxlghere e h-a"len, @l a/en,, 7o h D

2 El{Ew(rHlH;,z) [tr(z‘lo_‘l)-21chmax(z‘IQ'I)-Ew(r/Z)chmax(Z'IQ'I)]}-

The last inequality in (3.10) is obtained by an application of Lemma 2.3 since

rlllll;vz is nondecreasing in w, and

[tr(z'IQ'l) - 217 1en (E'IQ'I) - (r/2)ch (Z'IQ-I)] is also nondecreasing
max max

in W, fori=1, ..., p, and since Wi and "j (i # j) are mutually independent.

Hence, upon the substitution of (3.10) and (3.3) into (3.2), we conclude that
(3.11) Ca/2 = °A1 + (l-a)A2
os -2
-1.-1 -1.-1
x {a(p-21) + (1-a)[er(Z"°°Q ") - 2t chmax(z Q7))

- [o + (-adeh 7o IE, (/D))




By Condition (i), it is clear that the last expression of (3.11) is non-

% negative for all y and I and hence § is minimax proving the theorem.

1! Remarks., (1) Unless Condition (i) is satisfied, the theorem is vacuous.

.{ Thus it is required not only that tr(2'1Q°1) and chmax(z'lq'l) be known but

that, for 0 <a <1,

(3.12)  a(p-20) + (-a)erz7lQY) - 2 ezl h) 2 0.

On the other hand, if there exists positive constants < and <,

(0 < ¢ ¢, < <) such that (1.4) holds or, equivalently,

-1 -1
chmin(z ) = €y chmax(z ) < <,

pz2tfa + (1-a)e, ch (@ )1/[e + (1-a)e; eh . (@D)],

then the theorem remains true with Condition (i) replaced by

-1 -1
2{a(p-21) + (1-a)[c tr(Q") - 2t ¢, ch__ (Q )]}

(1) o0sr(X, W) < 1 T _12 max
a + (l-a)e, ch __(Q ")

max

(2) Berger and Bock (1976) show that the estimator §(X, W) given by
(3.1) is minimax for p under the loss Ll(g: E» L) and that there exists a
large positive integer N such that, for all n, 2N, p-2t > 0 and p 2 3.
Furthermore, they provide a formula for calculating t when the ni's are even,
In this paper, we employ their method of proof to establish our result. It

should be noted that our result reduces to theirs when a = 1.
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